Publications and Patents

Publications

* indicates equal contribution, # indicates corresponding author

2025

  • Malleus: Straggler-Resilient Hybrid Parallel Training of Large-scale Models via Malleable Data and Model Parallelization
    Haoyang Li*, Fangcheng Fu*#, Hao Ge, Sheng Lin, Xuanyu Wang, Jiawen Niu, Yujie Wang, Hailin Zhang, Xiaonan Nie, Bin Cui#
    SIGMOD 2025
  • PQCache: Product Quantization-based KVCache for Long Context LLM Inference
    Hailin Zhang, Xiaodong Ji, Yilin Chen, Fangcheng Fu, Xupeng Miao, Xiaonan Nie, Weipeng Chen, Bin Cui
    SIGMOD 2025
  • Memo: Fine-grained Tensor Management For Ultra-long Context LLM Training
    Pinxue Zhao, Hailin Zhang, Fangcheng Fu#, Xiaonan Nie, Qibin Liu, Fang Yang, Yuanbo Peng, Dian Jiao, Shuaipeng Li, Jinbao Xue, Yangyu Tao, Bin Cui#
    SIGMOD 2025
  • Spindle: Efficient Distributed Training of Multi-Task Large Models via Wavefront Scheduling
    Yujie Wang, Shenhan Zhu, Fangcheng Fu#, Xupeng Miao#, Jie Zhang, Juan Zhu, Fan Hong, Yong Li, Bin Cui#
    ASPLOS 2025
  • FlexSP: Accelerating Large Language Model Training via Flexible Sequence Parallelism
    Yujie Wang, Shiju Wang, Shenhan Zhu, Fangcheng Fu#, Xinyi Liu, Xuefeng Xiao, Huixia Li, Jiashi Li, Faming Wu, Bin Cui#
    ASPLOS 2025
  • NetMoE: Accelerating MoE Training through Dynamic Sample Placement
    Xinyi Liu, Yujie Wang, Fangcheng Fu, Xupeng Miao, Shenhan Zhu, Xiaonan Nie, Bin Cui
    ICLR 2025 (Spotlight)
  • ThunderServe: High-performance and Cost-efficient LLM Serving in Cloud Environments
    Youhe Jiang*, Fangcheng Fu*, Xiaozhe Yao*, Taiyi Wang, Bin Cui, Ana Klimovic, Eiko Yoneki
    MLSys 2025
  • Towards Scalable and Efficient Graph Structure Learning
    Siqi Shen, Wentao Zhang, Chengshuo Du, Chong Chen, Fangcheng Fu, Yingxia, Shao, Bin Cui
    ICDE 2025
  • Hounding Data Diversity: Towards Participant Selection in Vertical Federated Learning
    Xiaokai Zhou, Xiao Yan, Fangcheng Fu, Xinyan Li, Hao Huang, Quanqing Xu, Chuanhui Yang, Bo Du, Tieyun Qian, Jiawei Jiang
    ICDE 2025
  • Detecting and Analyzing Motifs in Large-scale Online Transaction Networks
    Jiawei Jiang, Hao Huang, Zhigao Zheng, Yi Wei, Fangcheng Fu, Xiaosen Li, Bin Cui
    TKDE 37(2): 584-596 (2025)
  • HaCore: Efficient Coreset Construction with Locality Sensitive Hashing for Vertical Federated Learning
    Qinbo Zhang, Xiao Yan, Yukai Ding, Fangcheng Fu, Quanqing Xu, Ziyi Li, Chuang Hu, Jiawei Jiang
    AAAI 2025
  • RAP: Random Projection is What You Need for Vertical Federated Learning
    Qinbo Zhang, Xiao Yan, Yukai Ding,Fangcheng Fu, Chuang Hu, Quanqing Xu, Xu Chen, Jiawei Jiang
    DASFFA 2025

2024

  • Enabling Parallelism Hot Switching for Efficient Training of Large Language Models
    Hao Ge*, Fangcheng Fu*#, Haoyang Li, Xuanyu Wang, Sheng Lin, Yujie Wang, Xiaonan Nie, Hailin Zhang, Xupeng Miao, Bin Cui#
    SOSP 2024
  • Efficient Multi-task LLM Quantization and Serving for Multiple LoRA Adapters
    Yifei Xia, Fangcheng Fu#, Wentao Zhang, Jiawei Jiang, Bin Cui#
    NeurIPS 2024
  • LSH-MoE: Communication-efficient MoE Training via Locality-Sensitive Hashing
    Xiaonan Nie, Qibin Liu, Fangcheng Fu#, Shenhan Zhu, Xupeng Miao, Xiaoyang Li, Yang Zhang, Shouda Liu, Bin Cui#
    NeurIPS 2024
  • ProjPert: Projection-based Perturbation for Label Protection in Split Learning based Vertical Federated Learning
    Fangcheng Fu, Xuanyu Wang, Jiawei Jiang, Huanran Xue, and Bin Cui
    TKDE 36(7): 3417-3428 (2024)
  • Improving Automatic Parallel Training via Balanced Memory Workload Optimization
    Yujie Wang, Youhe Jiang, Xupeng Miao#, Fangcheng Fu#, Shenhan Zhu, Xiaonan Nie, Yaofeng Tu, Bin Cui#
    TKDE 36(8): 3906-3920 (2024)
  • Accelerating Text-to-image Editing via Cache-enabled Sparse Diffusion Inference
    Zihao Yu, Haoyang Li, Fangcheng Fu, Xupeng Miao, Bin Cui
    AAAI 2024
  • X-former Elucidator: Reviving Efficient Attention for Long Context Language Modeling
    Xupeng Miao, Shenhan Zhu, Fangcheng Fu, Ziyu Guo, Zhi Yang, Yaofeng Tu, Zhihao Jia, Bin Cui
    IJCAI 2024
  • Generative and Contrastive Paradigms Are Complementary for Graph Self-Supervised Learning
    Yuxiang Wang, Xiao Yan, Chuang Hu, Quanqing Xu, Chuanhui Yang, Fangcheng Fu, Wentao Zhang, Hao Wang, Bo Du, Jiawei Jiang
    ICDE 2024

2023

  • Angel-PTM: A Scalable and Economical Large-scale Pre-training System in Tencent
    Xiaonan Nie, Yi Liu, Fangcheng Fu#, Jinbao Xue, Dian Jiao, Xupeng Miao, Yangyu Tao, Bin Cui#
    VLDB 2023
  • OSDP: Optimal Sharded Data Parallel for Distributed Deep Learning
    Youhe Jiang, Fangcheng Fu#, Xupeng Miao, Xiaonan Nie, Bin Cui#
    IJCAI 2023
  • KVSAgg: Secure Aggregation of Distributed Key-Value Sets
    Yuhan Wu, Siyuan Dong, Yi Zhou, Yikai Zhao, Fangcheng Fu, Tong Yang, Chaoyue Niu, Fan Wu, Bin Cui
    ICDE 2023
  • P2CG: A Privacy Preserving Collaborative Graph Neural Network Training Framework
    Xupeng Miao, Wentao Zhang, Yuezihan Jiang, Fangcheng Fu, Yingxia Shao, Lei Chen, Yangyu Tao, Gang Cao, Bin Cui
    VLDB Journal 32(4): 717-736 (2023)
  • Accelerating Text-to-image Editing via Cache-enabled Sparse Diffusion Inference
    Zihao Yu, Haoyang Li, Fangcheng Fu, Xupeng Miao, Bin Cui
    MLSys Workshop NeurIPS 2023

2022

  • Towards Communication-efficient Vertical Federated Learning Training via Cache-enabled Local Update
    Fangcheng Fu, Xupeng Miao, Jiawei Jiang, Huanran Xue, Bin Cui
    VLDB 2022
  • BlindFL: Vertical Federated Machine Learning without Peeking into Your Data
    Fangcheng Fu, Huanran Xue, Yong Cheng, Yangyu Tao, Bin Cui
    SIGMOD 2022
  • VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely?
    Jiawei Jiang, Lukas Burkhalter, Fangcheng Fu, Bo Li, Bolin Ding, Bo Du, Anwar Hithnawi, Ce Zhang
    NeurIPS 2022
  • Analyzing Online Transaction Networks with Network Motifs
    Jiawei Jiang, Yusong Hu, Xiaosen Li, Wen Ouyang, Zhitao Wang, Fangcheng Fu, Bin Cui
    SIGKDD 2022
  • K-Core Decomposition on Super Large Graphs with Limited Resources
    Shicheng Gao, Jie Xu, Xiaosen Li, Fangcheng Fu, Wentao Zhang, Wen Ouyang, Yangyu Tao, Bin Cui
    ACM SAC 2022

2021

  • VF2Boost: Very Fast Vertical Federated Gradient Boosting for Cross-Enterprise Learning
    Fangcheng Fu, Yingxia Shao, Lele Yu, Jiawei Jiang, Huanran Xue, Yangyu Tao, Bin Cui
    SIGMOD 2021

2020

  • Don’t Waste Your Bits! Squeeze Activations and Gradients for Deep Neural Networks via TinyScript
    Fangcheng Fu, Yuzheng Hu, Yihan He, Jiawei Jiang, Yingxia Shao, Ce Zhang, Bin Cui
    ICML 2020
  • SKCompress: Compressing Sparse and Nonuniform Gradient in Distributed Machine Learning
    Jiawei Jiang*, Fangcheng Fu*, Tong Yang, Yingxia Shao, Bin Cui
    VLDB Journal 29(5): 945-972 (2020)

2019

  • An Experimental Evaluation of Large Scale GBDT Systems
    Fangcheng Fu, Jiawei Jiang, Yingxia Shao, Bin Cui
    VLDB 2019

2018

  • SketchML: Accelerating Distributed Machine Learning with Data Sketches
    Jiawei Jiang, Fangcheng Fu, Tong Yang, Bin Cui
    SIGMOD 2018
  • DimBoost: Boosting Gradient Boosting Tree to Higher Dimensions
    Jiawei Jiang, Bin Cui, Ce Zhang, Fangcheng Fu
    SIGMOD 2018

Papers in Chinese

  • MQLserve:基于量化的多任务大语言模型服务系统/MQLserve: Quantization-based Multi-task LLM serve system
    符芳诚,夏义扉,崔斌/Fangcheng Fu, Yifei Xia, Bin Cui
    计算机学报/Chinese Journal of Computers (To appear), NDBC 2024 Best Paper
  • 面向高维特征和多分类的分布式梯度提升树/Distributed Gradient Boosting Decision Tree Algorithm for High-dimensional and Multi-classification Problems
    江佳伟,符芳诚,邵蓥侠,崔斌/Jiawei Jiang, Fangcheng Fu, Yingxia Shao, Bin Cui
    软件学报/Journal of Software, 2019, 30(3):784-798

Patents

  • 基于深度神经网络最小方差梯度量化压缩及图像处理方法. ZL 2019 1 1029711.0
  • 一种数据处理方法、装置、设备及计算机可读存储介质. ZL 2021 1 0576191.6
  • 基于联邦学习的数据传输方法、装置以及可读存储介质. ZL 2021 1 0680161.X
  • 基于联邦神经网络模型的数据处理方法、相关设备及介质. ZL 2021 1 0531392.4
  • 联邦模型训练方法、装置、终端设备以及存储介质. ZL 2022 1 0363190.8
  • 多方安全计算方法、装置、设备及存储介质. ZL 2021 1 0503941.7
  • 联邦神经网络模型的训练方法、装置、设备及存储介质. ZL 2020 1 1167325.0
  • 数据集合处理方法、数据处理方法、装置及存储介质. ZL 2021 1 0541183.8